Type Checking and Inference Are Equivalent in Lambda Calculi with Existential Types
نویسندگان
چکیده
This paper shows that type-checking and type-inference problems are equivalent in domain-free lambda calculi with existential types, that is, type-checking problem is Turing reducible to typeinference problem and vice versa. In this paper, the equivalence is proved for two variants of domain-free lambda calculi with existential types: one is an implication and existence fragment, and the other is a negation, conjunction and existence fragment. This result gives another proof of undecidability of type inference in the domain-free calculi with existence.
منابع مشابه
Type Checking and Inference for Polymorphic and Existential Types
This paper proves undecidability of type checking and type inference problems in some variants of typed lambda calculi with polymorphic and existential types. First, type inference in the domain-free polymorphic lambda calculus is proved to be undecidable, and then it is proved that type inference is undecidable in the negation, conjunction, and existence fragment of the domain-free typed lambd...
متن کاملUndecidability of Type-Checking in Domain-Free Typed Lambda-Calculi with Existence
This paper shows undecidability of type-checking and typeinference problems in domain-free typed lambda-calculi with existential types: a negation and conjunction fragment, and an implicational fragment. These are proved by reducing type-checking and type-inference problems of the domain-free polymorphic typed lambda-calculus to those of the lambda-calculi with existential types by continuation...
متن کاملType checking and typability in domain-free lambda calculi
This paper shows (1) the undecidability of the type checking and the typability problems in the domain-free lambda calculus with negation, product, and existential types, (2) the undecidability of the typability problem in the domain-free polymorphic lambda calculus, and (3) the undecidability of the type checking and the typability problems in the domain-free lambda calculus with function and ...
متن کاملType Checking and Inference for Polymorphic and Existential Types in Multiple-Quantifier and Type-Free Systems
A multiple quantifier is a quantifier having inference rules that introduce or eliminate arbitrary number of quantifiers by one inference. This paper introduces the lambda calculus with negation, conjunction, and multiple existential quantifiers, and the lambda calculus with implication and multiple universal quantifiers. Their type checking and type inference are proved to be undecidable. This...
متن کاملTypability and Type Checking in the Second-Order -Calculus Are Equivalent and Undecidable
Girard and Reynolds independently invented the second-order polymorphically typed lambda calculus, known as System F, to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions of typability and type checking. Typability asks for a term whether there exists some type it ...
متن کامل